top of page
hintergrund-ai-omatic-transparent.png

KI-basierte
Wartungssoftware

Maschinenstörungen frühzeitig erkennen, Ausfälle vermeiden & Wartungskosten senken.

Überblick des Gesundheitzustands verschiedener Maschinen

Ausfallzeiten von Maschinen: So teuer sind sie wirklich

Moderne Produktionsmaschinen generieren eine riesige Menge an Daten und stellen Ingenieure vor Herausforderungen bei der Überwachung und Instandhaltung. Die Folge: Immer wieder kommt es zu ungeplanten Ausfällen von einzelnen Maschinenkomponenten, die ganze Anlagen und Produktionen stilllegen können. Laut einer aktuellen Studie von Siemens (2023) haben solche Ausfälle schwerwiegende Folgen für die weltweite Industrie:

Halle voller Maschinen, die gewartet werden müssen

Im Durchschnitt
nur 60 % Maschinen-verfügbarkeit

Mann arbeitet an großer Maschine

≈ 3,3 Millionen verlorene Arbeitsstunden pro Jahr durch unerwartete Ausfallzeiten

Ungeplante Maschinenausfälle mit ai-omatic vermeiden

Ein Ausfall kostet
Unternehmen im
Durchschnitt 380.000 €

Vorteile von vorausschauender Instandhaltung

Vorausschauende Instandhaltung (Predictive Maintenance) bezeichnet die proaktive Überwachung von Maschinen und Anlagen, um potenzielle Ausfälle frühzeitig zu identifizieren und verhindern. Im Gegensatz zu herkömmlichen reaktiven Instandhaltungsstrategien ermöglicht die präventive Herangehensweise eine rechtzeitige Planung von Wartungsmaßnahmen. Durch die Echtzeit-Analyse von Maschinendaten können Unternehmen eine kosteneffiziente Wartungsstrategie umsetzen, Ausfälle minimieren und die Lebensdauer ihrer Anlagen verlängern.

20 %
weniger Maschinenausfälle¹

17 %
Senkung der Wartungskosten²

Ø 10 %
Steigerung des Umsatzes³

Zwei Personen warten eine Maschine mit Instandhaltungssoftware von ai-omatic

Vorausschauende Wartung
durch KI-basierte Software

So unterstützt aiomatic bei der Implementierung vorausschauender Instandhaltungsmaßnahmen: Unsere Softwarelösung dient als digitaler Wartungsassistent, der das Fachwissen eines Ingenieurs in ein leistungsstarkes KI-System integriert. Dadurch ermöglichen wir eine automatisierte präzise Echtzeit-Überwachung von Maschinen. Diese innovative Lösung erlaubt eine vorausschauende Instandhaltung, bei der Probleme auf einem Dashboard angezeigt werden, bevor sie Ausfälle verursachen. 

Eine Lösung für alle Branchen & Anlagen

Entdecken Sie unsere innovative Software für vorausschauende Instandhaltung – speziell entwickelt für große Datenmengen hochkomplexer Maschinenanlagen in der Energiebranche, Automobilzulieferung, chemischen Prozessindustrie, Tiernahrung, Verpackungsindustrie, Werkzeugherstellung und Kunststoffverarbeitung. In unserem Use Case Portfolio finden Sie Erfolgsgeschichten bestehender Kunden aus unterschiedlichen Branchen.

Mann bedient Tiefruckmaschine mit Instandhaltungssoftware
Das Dashboard von ai-omatic, sichtbar auf aufgeklapptem Laptop

Das Dashboard: Alle Sensordaten auf einen Blick

Durch die kontinuierliche Live-Analyse der Sensordaten Ihrer Maschinen, lernt unsere KI-Software deren Normalzustand und erkennt Abweichungen (Anomalien) in den Daten ohne Verzögerung. Mithilfe eines eigens entwickelten Health Scores zwischen O und 100 % ermöglicht aiomatic einen präzisen Einblick in den Zustand aller Maschinenkomponenten. Klare Ergebnisse ermöglichen eine schnelle Identifizierung der Störungs-ursachen und gezielte Instandhaltungsmaßnahmen.

In 5 Schritten zur vorausschauenden Wartung

1. Ziele & Maschinen definieren

Ziele sind z.B. die Minimierung von Ausfällen und Wartungskosten sowie die Implementierung von vorausschauenden Wartungsmaßnahmen. Anhand unserer Fragen wählen Sie relevante Maschinen.

2. Voraussetzungen schaffen

Für die Analyse Ihrer Maschinendaten und die Bestimmung des Normalzustands ist eine nahtlose Datenintegration wichtig. Unsere Anleitung und Plug-and-Play-Hardware helfen dabei.

3. Sensoren
nachrüsten

In den meisten Fällen kann vorhandene Sensorik Ihrer Maschinen genutzt werden. Ist dies nicht der Fall, können wir Sie bei der Nachrüstung Ihrer Maschinen beraten.

4. Software konfigurieren

Ihre Anlage wird in unserem digitalen Assistenten abgebildet.
Für die Konfiguration unterstützen wir Sie mit Workshops & einer detaillierten Anleitung.

5. Live-Überwachung

Nun werden unsere KI-Modelle kontinuierlich mit neuen Daten trainiert.
Die Software erkennt Anomalien in Echtzeit und bewertet den Zustand der Maschinen von 0 - 100 %. 

Vier Vorteile der Lösung von aiomatic

Diese Unternehmen vertrauen unserer Lösung

Die Zukunft in der Instandhaltung gestaltet sich schwierig, wenn die Ressource Fachkraft betrachtet wird. Mit der KI-basierten Lösung von aiomatic sieht diese aber wieder viel besser aus. Das Team kann sich nun anderen Tätigkeiten widmen, während die Überwachung und frühzeitige Warnmeldung durch aiomatic erfolgt.

Andreas Weber, Canyon Bicycles

Logo unseres Kunden Canyon
Logo unseres Kunden Astora
Logo unseres Partners Siemens
Logo unseres Partners Lufhansa Industry
Logo unseres Kunden PetCom
Logo unseres Partners SAP
Logo des Strive Magazins
Logo von t3n
Logo des Handelsblatt
Logo von RTL Nord

Außerdem bekannt aus

Logo von Die Welt
Logo von NRD
  • How does ai-omatic ensure data protection?
    Protecting your data is a top priority for ai-omatic. We are currently in the ISO 27001 certification process and use proven technologies to ensure the security of your data. These include TLS encryption, use of the Azure Cloud and IP whitelisting.
  • What distinguishes ai-omatics technology from what other companies offer?
    ai-omatics technology differs significantly from the solutions of competing companies in terms of its scalability and the accuracy of the results. To do this, the digital maintenance assistant developed by ai-omatic uses the engineer's specialist knowledge of the causal dependency structure between machine variables and combines this domain knowledge with the power of machine learning. This allows for higher model accuracy and more explainable results, increasing the acceptance of the approach among engineers. The result: - 20% better prediction accuracy - 70% faster scalability - an explainable AI solution for predictive maintenance
  • What does ai-omatic provide customers?
    The customer receives access to a web-based dashboard on which the health score of the machine is displayed in the form of a factor between 0% and 100%. Through this, ai-omatics customers get an insight into the condition of their machines and can trace abnormal machine behavior down to the sensor level. By means of a trend display, the dashboard also offers the user the option of evaluating the forecasts and assessing value groups.
  • Why is the ai-omatic approach more suitable than pure vibration-based monitoring?
    Use of existing data: ai-omatic uses data that is already collected from the machine or the process. This means that no additional sensors are required. This significantly reduces costs and installation effort. Taking into account various data points: In contrast to pure vibration monitoring, the maintenance assistant can include data points that have already been recorded. This makes it possible to monitor machines where vibration patterns do not provide meaningful information or where components within complex machines are difficult to access. Inclusion of external influencing factors: The biggest difference is that the ai-omatic maintenance assistant includes external influencing factors, such as different operating modes or the current product recipe, in the analysis. Unlike sensors that are not synchronized with the process, ai-omatic can more closely monitor the "normal state" of the machine. This enables a more precise detection of changes and an early indication of possible problems. ai-omatic learns individual vibration patterns for each distinguishable operating mode, which ensures high sensitivity and accuracy.
  • What types of data can ai-omatic process?
    ai-omatic is able to process different types of data as long as they are available via a suitable interface (especially OPC UA). This includes numbers, decimals, text, and true/false values. ai-omatics software takes into account both sensor data and the expertise of the engineer, which can be entered via a simple interface. By combining these two types of data it is possible to provide effective maintenance.
  • Which problems can be solved by using ai-omatics software?
    ai-omatic is able to monitor the behavior of machines and detect even the slightest deviations in the data. Taking the contextual factors into account, a risk assessment of the abnormal machine behavior can be made, alerting users to adverse machine behavior. This ensures, among other things, the following: - Early detection of machine or individual component failures - Identifying the causes of the erroneous behavior - Fast troubleshooting and avoidance of consequential damage and costs
  • How does ai-omatic access the data?
    Access to machine data can be enabled through several solutions. Typically, data is queried at the machine using the OPC UA protocol. Standard software solution: ai-omatic software for retrieving data from the machine and transferring it to the AI-Omatic Azure Cloud. IoT gateway: Aggregates various data sources, ideal for retrofitting vibration sensors. Supports cellular transmission to the ai-omatic Azure Cloud. Siemens Industrial Edge device: Communicates via software modules with all common industrial protocols and transfers data to the ai-omatic Azure Cloud. MQTT-based custom solution: Allows sending machine data from existing software in a predefined format to an encrypted MQTT broker in the ai-omatic Azure Cloud.
  • Which and how much historical data is required for the start of the project?
    ai-omatic's algorithm does not require any historical sensor data or error logs, but learns from new data that is sent to the system during live operation.
  • What compute and storage hardware is required?
    To utilize the ai-omatic software, specific hardware requirements must be met. On the customer's side, an Ubuntu server with access to the OPC UA server should be available. The server can be implemented as either a physical server or a virtual machine (VM). For a VM without local storage, the following minimum hardware specifications are recommended: Operating System: Linux Ubuntu 22.04 (LTS) Processor: 2 vCPUs Memory: 8 GB RAM Storage: 70 GB SSD Additionally, the following network requirements should be considered: Outbound Ports: 443 MQTT/AMQP over Websockets Furthermore, for the server to connect to the machine, it must be in the same subnet as the OPC UA server or be able to reach it.
  • What do I need to get started?
    Once you have identified a machine, system or process that you would like to monitor with the ai-omatic software, 7 steps are required. The aim is for your machine data to be continuously transferred to the ai-omatic Azure Cloud for analysis. Provision of the virtual machine. If possible, provision of a VPN for support by ai-omatic. Release of URLs Installation of the IoT Edge software environment. Establishing a connection to the OPC UA server of the pilot plant: Provision of OPC UA information. Establishing the network connection between the virtual machine and the data source (OPC UA) with any necessary port releases. We provide detailed instructions for carrying out these steps, which also take into account certain special features such as a proxy. With these steps, you are well equipped to start data acquisition / your project with ai-omatic.
  • Which industries use predictive maintenance?
    Our predictive maintenance software is used in a wide range of industries. The manufacturing, energy, transportation and logistics industries in particular benefit from our solution, as failures of individual machine components often lead to expensive downtime of entire production lines. However, predictive maintenance is also used in the aviation, oil and gas and healthcare industries to minimize downtimes and ensure safety.
  • What is the difference between reactive, preventive and predictive maintenance?
    Reactive maintenance only reacts to problems after they occur, which can lead to unexpected failures and longer downtimes. Although preventive maintenance involves regular maintenance work, there is a risk of over-maintenance or unnecessary interventions, which can lead to high costs. In contrast, predictive maintenance uses advanced technologies to detect anomalies early and predict maintenance needs to minimize downtime and increase efficiency.
  • What input data is used for the predictive maintenance of machines?
    Input data such as sensor data, historical maintenance logs and operating data are used for the predictive maintenance of machines. This data is analyzed to detect patterns and identify potential problems at an early stage.
  • Why is AI-based predictive maintenance important?
    Predictive maintenance is crucial for companies in various industries today. This innovative maintenance strategy uses advanced technologies such as machine learning and big data analytics to continuously monitor the condition of assets and predict maintenance needs before failures occur. 1. Avoiding downtime and production losses: By detecting anomalies and potential problems at an early stage, companies can avoid downtime and production losses. This enables continuous and reliable production, which has a direct impact on the company's profitability and success. 2. Optimization of maintenance activities: By accurately predicting maintenance needs, companies can optimize their maintenance operations. Instead of relying on fixed schedules or carrying out reactive repairs, they can plan maintenance work in a targeted manner and deploy resources efficiently. The result is reduced maintenance costs and an extended system service life. 3. Increasing system availability: Predictive maintenance helps to increase the availability of systems by minimizing potential downtime. This is particularly important in industries such as manufacturing, power generation and logistics, where uninterrupted plant uptime is crucial. 4. Combating skills shortages: By accurately predicting maintenance needs based on data analytics, maintenance staff can plan more specifically and avoid unnecessary maintenance. This reduces maintenance effort and allows the team to focus on essential tasks, while less experienced staff can recognize anomalies early and respond appropriately. Overall, predictive maintenance helps to increase the efficiency and productivity of the maintenance team and ensure operational continuity. 5. Competitive advantages: Companies that rely on predictive maintenance have a clear competitive advantage in the market. They can adapt more quickly to changing market conditions, better meet customer requirements and be more agile and resilient overall. This lays the foundation for long-term success and future security.
  • How can I implement predictive maintenance in my company?
    The implementation of predictive maintenance measures requires the selection of a suitable software solution, the integration of sensors and the training of personnel to handle the new maintenance strategies.

Entdecke die Möglichkeiten von aiomatic

bottom of page